X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们 | 帮助中心
欢迎来到国家技术转移西南中心---区域技术转移公共服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00901979]基于长短期记忆神经网络的空气质量时空预测方法

交易价格: 面议

所属行业: 网络

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN202010629347.8

交易方式: 其他

联系人:

所在地:浙江杭州市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明公开一种基于长短期记忆神经网络的空气质量时空预测方法。本发明整合实验站点及最近相邻站点的颗粒物浓度数据、同时期的气象数据及气态污染物数据,转换为监督学习的数据格式,对数据进行归一化处理,利用长短期记忆网络训练数据,得到空气质量浓度的预测序列。包括以下步骤:S1:获取历史空气质量数据和气象数据;S2:对历史空气质量进行数据预处理,包括异常值剔除、缺失值插值处理、相邻站点颗粒物浓度数据的提取以及数据归一化;S3:转换数据格式,从序列到输入和输出序列对;S4:划分数据集为训练集和测试集及初始化长短期记忆网络各种超参数;S5:通过在测试集上的预测检验模型效果。该发明方法能够提高空气质量数据的预测精度。
本发明公开一种基于长短期记忆神经网络的空气质量时空预测方法。本发明整合实验站点及最近相邻站点的颗粒物浓度数据、同时期的气象数据及气态污染物数据,转换为监督学习的数据格式,对数据进行归一化处理,利用长短期记忆网络训练数据,得到空气质量浓度的预测序列。包括以下步骤:S1:获取历史空气质量数据和气象数据;S2:对历史空气质量进行数据预处理,包括异常值剔除、缺失值插值处理、相邻站点颗粒物浓度数据的提取以及数据归一化;S3:转换数据格式,从序列到输入和输出序列对;S4:划分数据集为训练集和测试集及初始化长短期记忆网络各种超参数;S5:通过在测试集上的预测检验模型效果。该发明方法能够提高空气质量数据的预测精度。

推荐服务:

Copyright © 2016    国家技术转移西南中心-区域技术转移公共服务平台     All Rights Reserved     蜀ICP备12030382号-1

主办单位:四川省科技厅、四川省科学技术信息研究所、四川省技术转移中心科易网