本发明为一种光伏阵列故障诊断和预警方法,采用非线性最小二乘法优化的Elman神经网络和决策树结合经验知识构建故障诊断模型,采集当前光伏阵列运行数据和气象数据,计算与历史正常状态数据的误差,当误差大于阈值表示有故障,用故障诊断模型得到相应的故障类型及可信度,最后综合评价得到最终故障类型的可信度,按可信度值大小选择进行故障预警。
此后按现场实测情况对故障知识库更新。本发明LM‑Elman神经网络和决策树结合经验知识构建故障诊断模型,提高历史数据敏感性,预测效果优于BP网络,且提高了网络收敛速度和训练的精度;经验知识的补充,使本法鲁棒性更强。
实时检测、及时诊断,减少故障发生率,以保光伏电站稳定运行。
Copyright © 2016 国家技术转移西南中心-区域技术转移公共服务平台 All Rights Reserved 蜀ICP备12030382号-1
主办单位:四川省科技厅、四川省科学技术信息研究所、四川省技术转移中心科易网