X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们 | 帮助中心
欢迎来到国家技术转移西南中心---区域技术转移公共服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00272398]一种基于高阶图跨时域关联的多目标跟踪方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201710015550.4

交易方式: 技术转让 技术转让 技术入股

联系人: 南京邮电大学

进入空间

所在地:江苏南京市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明公开了一种基于高阶图跨时域关联的多目标跟踪方法,首先根据多目标检测方法得到视频中各帧的检测结果;然后由这些检测响应和构建高阶边的限制函数F(vi,vj)来构建一个跨时域的普通高阶图;之后为了快速提取普通高阶图中包含的各个时域下的局部轨迹段集合,使用RANSAC‑style的优化方法将普通高阶图先转化成随机一致性高阶图,再进一步转化成普通的二阶图,最后对普通二阶图进行子图搜索,再将各个子图中多个轨迹段按照时域的先后顺序连接起来,形成目标长轨迹,从而使复杂场景中的多目标跟踪具有很好的鲁棒性。本发明充分利用复杂场景中多目标的运动信息和表象信息进行跨时域关联,解决了邻近目标表观相似时出现身份交换或者局部关联错误造成的跟踪失败问题。
本发明公开了一种基于高阶图跨时域关联的多目标跟踪方法,首先根据多目标检测方法得到视频中各帧的检测结果;然后由这些检测响应和构建高阶边的限制函数F(vi,vj)来构建一个跨时域的普通高阶图;之后为了快速提取普通高阶图中包含的各个时域下的局部轨迹段集合,使用RANSAC‑style的优化方法将普通高阶图先转化成随机一致性高阶图,再进一步转化成普通的二阶图,最后对普通二阶图进行子图搜索,再将各个子图中多个轨迹段按照时域的先后顺序连接起来,形成目标长轨迹,从而使复杂场景中的多目标跟踪具有很好的鲁棒性。本发明充分利用复杂场景中多目标的运动信息和表象信息进行跨时域关联,解决了邻近目标表观相似时出现身份交换或者局部关联错误造成的跟踪失败问题。

推荐服务:

Copyright © 2016    国家技术转移西南中心-区域技术转移公共服务平台     All Rights Reserved     蜀ICP备12030382号-1

主办单位:四川省科技厅、四川省科学技术信息研究所、四川省技术转移中心科易网