X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
关于我们 | 帮助中心
欢迎来到国家技术转移西南中心---区域技术转移公共服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00263085]基于KMDB的软测量建模数据异常点检测方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201510157690.6

交易方式: 技术转让 技术转让 技术入股

联系人: 天津工业大学

进入空间

所在地:天津天津市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

摘要:本发明是一种基于KMDB(K-means与DBSCAN相结合的算法)的软测量建模数据异常点检测方法,其特征在于包括下列步骤:(1)设定异常点比例p0与误差比较系数t。(2)对确定的样本数据集进行软测量建模,计算建模测试误差e0(选取相对误差)。(3)用建模误差指导K值的选择,将数据集划分为K类。(4)对每一类用DBSCAN算法进行异常点检测。(5)用异常数据样本占总样本的比例p调整DBSCAN算法中Eps和MinPts的选择。(6)将删除异常点的数据进行软测量建模,得到误差e。比较e与te0判断算法是否有效。(7)判断在迭代次数范围内算法是否达到设定条件,若未达到需返回(1)重新选择p0与t;否则,算法结束。KMDB算法有效地提高了聚类算法的精度及软测量模型的稳定性。
摘要:本发明是一种基于KMDB(K-means与DBSCAN相结合的算法)的软测量建模数据异常点检测方法,其特征在于包括下列步骤:(1)设定异常点比例p0与误差比较系数t。(2)对确定的样本数据集进行软测量建模,计算建模测试误差e0(选取相对误差)。(3)用建模误差指导K值的选择,将数据集划分为K类。(4)对每一类用DBSCAN算法进行异常点检测。(5)用异常数据样本占总样本的比例p调整DBSCAN算法中Eps和MinPts的选择。(6)将删除异常点的数据进行软测量建模,得到误差e。比较e与te0判断算法是否有效。(7)判断在迭代次数范围内算法是否达到设定条件,若未达到需返回(1)重新选择p0与t;否则,算法结束。KMDB算法有效地提高了聚类算法的精度及软测量模型的稳定性。

推荐服务:

Copyright © 2016    国家技术转移西南中心-区域技术转移公共服务平台     All Rights Reserved     蜀ICP备12030382号-1

主办单位:四川省科技厅、四川省科学技术信息研究所、四川省技术转移中心科易网